Fat Points, Inverse Systems, and Piecewise Polynomial Functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fat Points, Inverse Systems, and Piecewise Polynomial Functions

We explore the connection between ideals of fat points (which correspond to subschemes of Pn obtained by intersecting (mixed) powers of ideals of points), and piecewise polynomial functions (splines) on a d-dimensional simplicial complex ∆ embedded in R. Using the inverse system approach introduced by Macaulay [11], we give a complete characterization of the free resolutions possible for ideals...

متن کامل

The Weak Lefschetz Property, Inverse Systems and Fat Points

In [13], Migliore–Miró-Roig–Nagel show that the Weak Lefschetz property can fail for an ideal I ⊆ K[x1, . . . , x4] generated by powers of linear forms. This is in contrast to the analogous situation in K[x1, x2, x3], where WLP always holds [16]. We use the inverse system dictionary to connect I to an ideal of fat points, and show that failure of WLP for powers of linear forms is connected to t...

متن کامل

Coupled systems of equations with entire and polynomial functions

We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1}   A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We    derive a priory estimates  for the sums of the rootsof the considered system andfor the counting function of  roots.

متن کامل

Extending Piecewise Polynomial Functions in Two Variables

We study the extensibility of piecewise polynomial functions defined on closed subsets of R2 to all of R2. The compact subsets of R2 on which every piecewise polynomial function is extensible to R2 can be characterized in terms of local quasi-convexity if they are definable in an o-minimal expansion of R. Even the noncompact closed definable subsets can be characterized if semialgebraic functio...

متن کامل

Piecewise Polynomial Functions on a Planar Region: Iii Abstract Piecewise Polynomial Functions on a Planar Region: Boundary Constraints And

Piecewise Polynomial Functions on a Planar Region: Boundary Constraints and Polyhedral Subdivisions. (May 2006) Terry Lynn McDonald, B.S., The University of Texas at Tyler; M.S., Texas A&M University Chair of Advisory Committee: Dr. Henry Schenck Splines are piecewise polynomial functions of a given order of smoothness r on a triangulated region ∆ (or polyhedrally subdivided region ) of R. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1998

ISSN: 0021-8693

DOI: 10.1006/jabr.1997.7361